Locating Real Zeros of a Polynomials

The Factor Theorem:

If c is a zero of the polynomial $p(x)$ then $(x-c)$ is a factor of $p(x)$.

The Rational Zeros Theorem:

If the rational number $\frac{p}{q}$ is a zero of a polynomial, then p is a factor of the constant term and q is a factor of the leading coefficient.

Example:

Write out a list of the possible rational zeros for the polynomials given below:

$$
f(x)=x^{3}-7 x^{2}-4 x+28
$$

$$
g(x)=2 x^{4}-3 x^{3}-6 x^{2}+6 x+4
$$

Descartes Rule of Signs:

If the polynomial function $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ has real coefficients and $a_{0} \neq 0$ then:
-The number of positive real zeros is less than (by an even integer) or equal to the number of sign variations of $P(x)$.
-The number of negative real zeros is less than (by an even integer) or equal to the number of sign variations of $P(-x)$.

Use Descartes Rule of Signs to determine the possible number of positive real zeros and negative real zeros for the following polynomial functions.

$$
f(x)=7 x^{3}-2 x^{2}+2 x+3
$$

$$
g(x)=\frac{1}{2} x^{6}-\frac{1}{10} x^{4}-\frac{1}{5} x^{2}-\frac{1}{3}
$$

Upper and Lower Bounds of Real Zeros:
If $f(x)$ is a polynomial of degree $n \geq 1$ with real coefficients and a positive leading coefficient.

1) No real zero of f is larger than b if the last row in the synthetic division of $f(x)$ by $x-b$ contains no negative numbers. If all of the real zeros of f are less than b then b is said to be an upper bound of the zeros of f.
2) No real zero of f is smaller than a if the last row in the synthetic division of $f(x)$ by $x-a$ has entries that alternate in sign (0 can be counted as a either positive or negative). If all of the real zeros of f are greater than a, then a is said to be a lower bound of the zeros of f.

Determine the smallest integer that is an upper bound of the zeros of f and determine the largest integer that is a lower bound of the zeros of f.
$f(x)=7 x^{3}-2 x^{2}+2 x+3$

Use Descartes' rule of signs, rational zeros test, upper and lower bounds test, and polynomial division to determine all of the zeros of the polynomial P.

$$
P(x)=x^{3}-3 x^{2}+4 x-12
$$

The Intermediate Value Theorem:

Assume that $f(x)$ is a polynomial with real coefficients, and that a and b are real numbers with $a<b$. If $f(a)$ and $f(b)$ have different signs then there is at least one real zero c of f such that $a<c<b$. See graph below:

Does the Intermediate Value Theorem guarantee that the polynomial function $f(x)=2 x^{3}-x^{2}-3 x$ has a zero in the interval [1,2]?

Does the Intermediate Value Theorem guarantee that the polynomial function $g(x)=4 x^{3}+16 x^{2}+5 x-25$ has a zero in the interval $[-3,-2]$?

If $-5 / 2$ is a zero of g, does that contradict the Intermediate Value Theorem?

